Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36987003

RESUMO

Heterosis is the phenomenon in which some hybrid traits are superior to those of their parents. Most studies have analyzed the heterosis of agronomic traits of crops; however, heterosis of the panicles can improve yield and is important for crop breeding. Therefore, a systematic study of panicle heterosis is needed, especially during the reproductive stage. RNA sequencing (RNA Seq) and transcriptome analysis are suitable for further study of heterosis. Using the Illumina Nova Seq platform, the transcriptome of ZhongZheYou 10 (ZZY10), an elite rice hybrid, the maintainer line ZhongZhe B (ZZB), and the restorer line Z7-10 were analyzed at the heading date in Hangzhou, 2022. 581 million high-quality short reads were obtained by sequencing and were aligned against the Nipponbare reference genome. A total of 9000 differential expression genes were found between the hybrids and their parents (DGHP). Of the DGHP, 60.71% were up-regulated and 39.29% were down-regulated in the hybrid. Comparative transcriptome analysis revealed that 5235 and 3765 DGHP were between ZZY10 and ZhongZhe B and between ZZY10 and Z7-10, respectively. This result is consistent with the transcriptome profile of ZZY10 and was similar to Z7-10. The expression patterns of DGHP mainly exhibited over-dominance, under-dominance, and additivity. Among the DGHP-involved GO terms, pathways such as photosynthesis, DNA integration, cell wall modification, thylakoid, and photosystem were significant. 21 DGHP, which were involved in photosynthesis, and 17 random DGHP were selected for qRT-PCR validation. The up-regulated PsbQ and down-regulated subunits of PSI and PSII and photosynthetic electron transport in the photosynthesis pathway were observed in our study. Extensive transcriptome data were obtained by RNA-Seq, providing a comprehensive overview of panicle transcriptomes at the heading stage in a heterotic hybrid.

2.
Plants (Basel) ; 11(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807670

RESUMO

Aluminum (Al) solubilizes into trivalent ions (Al3+) on acidic soils, inhibiting root growth. Since about 13% of global rice cultivation is grown on acidic soils, improving Al tolerance in rice may significantly increase yields. In the present study, metabolome analysis under Al toxicity between the Al-tolerant variety Nipponbare and the Al-sensitive variety H570 were performed. There were 45 and 83 differential metabolites which were specifically detected in Nipponbare and H570 under Al toxicity, respectively. Furthermore, the results showed that 16 lipids out of 45 total metabolites were down-regulated, and 7 phenolic acids as well as 4 alkaloids of 45 metabolites were up-regulated in Nipponbare, while 12 amino acids and their derivatives were specifically detected in H570, of which 11 amino acids increased, including L-homoserine and L-methionine, which are involved in cysteine synthesis, L-ornithine and L-proline, which are associated with putrescine synthesis, and 1-aminocyclopropane-1-carboxylate, which is associated with ethylene synthesis. The contents of cysteine and s-(methyl) glutathione, which were reported to be related to Al detoxification in rice, decreased significantly. Meanwhile, putrescine was accumulated in H570, while there was no significant change in Nipponbare, so we speculated that it might be an intermediate product of Al detoxification in rice. The differential metabolites detected between Al-tolerant and -sensitive rice variants in the present study might play important roles in Al tolerance. These results provide new insights in the mechanisms of Al tolerance in rice.

3.
Sci Rep ; 9(1): 19445, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857634

RESUMO

Fatty acid desaturases can catalyze saturated or unsaturated fatty acids to form a double bond at various locations in the hydrocarbon chain. In the present study, a total of 20 full-length desaturase genes were identified from rice genome. An exhaustive analysis was performed to describe their chromosomal locations, gene structures, phylogeny, cis-regulatory elements, sub-cellular localizations and expression patterns. The rice desaturase genes were distributed on ten of 12 chromosomes and phylogenetically classified into six subfamilies with the Arabidopsis counterparts, FAB2, FAD2, FAD3/7/8, FAD6, DES1 and SLD1. Among of them, 9 members were expanded via chromosomal tandem or segmental duplications. The gene structures and motif constituents were evolutionarily conserved in the same subfamilies. The majority of desaturase genes showed tissue-specific expression patterns and response to abiotic stresses and hormones based on microarray data and qRT-PCR analyses. This study will provide useful clues for functional validation of desaturase genes and contribute to produce nutritionally important fatty acids by genetic modification in rice.


Assuntos
Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Oryza/genética , Proteínas de Plantas/genética , Sequência de Bases , Sequência Conservada , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Filogenia
4.
BMC Plant Biol ; 19(1): 490, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718538

RESUMO

BACKGROUND: The genetic mechanism of aluminum (Al) tolerance in rice is great complicated. Uncovering genetic mechanism of Al tolerance in rice is the premise for Al tolerance improvement. Mining elite genes within rice landrace is of importance for improvement of Al tolerance in rice. RESULTS: Genome-wide association study (GWAS) performed in EMMAX for rice Al tolerance was carried out using 150 varieties of Ting's core collection constructed from 2262 Ting's collections with more than 3.8 million SNPs. Within Ting's core collection of clear population structure and kinship relatedness as well as high rate of linkage disequilibrium (LD) decay, 17 genes relating to rice Al tolerance including cloned genes like NRAT1, ART1 and STAR1 were identified in this study. Moreover, 13 new candidate regions with high LD and 69 new candidate genes were detected. Furthermore, 20 of 69 new candidate genes were detected with significant difference between Al treatment and without Al toxicity by transcriptome sequencing. Interestingly, both qRT-PCR and sequence analysis in CDS region demonstrated that the candidate genes in present study might play important roles in rice Al tolerance. CONCLUSIONS: The present study provided important information for further using these elite genes existing in Ting's core collection for improvement of rice Al tolerance.


Assuntos
Alumínio/farmacologia , Estudo de Associação Genômica Ampla , Oryza/genética , Adaptação Fisiológica/genética , Oryza/efeitos dos fármacos , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Transcriptoma
5.
BMC Plant Biol ; 19(1): 259, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208337

RESUMO

BACKGROUND: Cultivated rice (Oryza sativa L.) is one of the staple food for over half of the world's population. Thus, improvement of cultivated rice is important for the development of the world. It has been shown that abundant elite genes exist in rice landraces in previous studies. RESULTS: A genome-wide association study (GWAS) performed with EMMAX for 12 agronomic traits measured in both Guangzhou and Hangzhou was carried out using 150 accessions of Ting's core collection selected based on 48 phenotypic traits from 2262 accessions of Ting's collection, the GWAS included more than 3.8 million SNPs. Within Ting's core collection, which has a simple population structure, low relatedness, and rapid linkage disequilibrium (LD) decay, we found 32 peaks located closely to previously cloned genes such as Hd1, SD1, Ghd7, GW8, and GL7 or mapped QTL, and these loci might be natural variations in the cloned genes or QTL which influence potentially agronomic traits. Furthermore, we also detected 32 regions where new genes might be located, and some peaks of these new candidate genes such as the signal on chromosome 11 for heading days were even higher than that of Hd1. Detailed annotation of these significant loci were shown in this study. Moreover, according to the estimated LD decay distance of 100 to 350 kb on the 12 chromosomes in this study, we found 13 identical significant regions in the two locations. CONCLUSIONS: This research provided important information for further mining these elite genes within Ting's core collection and using them for rice breeding.


Assuntos
Oryza/genética , Característica Quantitativa Herdável , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas/genética , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Desequilíbrio de Ligação/genética , Locos de Características Quantitativas/genética
6.
Int J Mol Sci ; 20(4)2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30823582

RESUMO

Aluminum (Al) at high concentrations inhibits root growth, damage root systems, and causes significant reductions in rice yields. Indica and Japonica rice have been cultivated in distinctly different ecological environments with different soil acidity levels; thus, they might have different mechanisms of Al-tolerance. In the present study, transcriptomic analysis in the root apex for Al-tolerance in the seedling stage was carried out within Al-tolerant and -sensitive varieties belonging to different subpopulations (i.e., Indica, Japonica, and mixed). We found that there were significant differences between the gene expression patterns of Indica Al-tolerant and Japonica Al-tolerant varieties, while the gene expression patterns of the Al-tolerant varieties in the mixed subgroup, which was inclined to Japonica, were similar to the Al-tolerant varieties in Japonica. Moreover, after further GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses of the transcriptomic data, we found that eight pathways, i.e., "Terpenoid backbone biosynthesis", "Ribosome", "Amino sugar and nucleotide sugar metabolism", "Plant hormone signal transduction", "TCA cycle", "Synthesis and degradation of ketone bodies", and "Butanoate metabolism" were found uniquely for Indica Al-tolerant varieties, while only one pathway (i.e., "Sulfur metabolism") was found uniquely for Japonica Al-tolerant varieties. For Al-sensitive varieties, one identical pathway was found, both in Indica and Japonica. Three pathways were found uniquely in "Starch and sucrose metabolism", "Metabolic pathway", and "Amino sugar and nucleotide sugar metabolism".


Assuntos
Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Oryza/genética , Transcriptoma/efeitos dos fármacos , Alumínio/metabolismo , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética
7.
Front Plant Sci ; 7: 1415, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27757115

RESUMO

Trivalent aluminum (Al3+) has drastic effect on the rice production in acidic soils. Elite genes for aluminum (Al) tolerance might exist in rice landraces. Therefore, the purpose of this research is to mine the elite genes within rice landraces. Association mapping for Al tolerance traits [i.e., relative root elongation (RRE)] was performed by using a core collection of 150 accessions of rice landraces (i.e., Ting's rice core collection). Our results showed that the Ting's rice core collection possessed a wide-range of phenotypic variation for Al tolerance, and the index of Al tolerance (RRE) was ranged from 0.22 to 0.89. Moreover, the groups with different origins and compositions of indica and japonica rice showed different degrees of tolerance to varying levels of Al. These rice landraces were further screened with 274 simple sequence repeat markers, and association mapping was performed using a mixed linear model approach. The mapping results showed that a total of 23 significant (P < 0.05) trait-marker associations were detected for Al tolerance. Of these, three associations (13%) were identical to the quantitative trait loci reported previously, and other 20 associations were reported for the first time in this study. The proportion of phenotypic variance (R2) explained by 23 significant associations ranged from 5.03 to 20.03% for Al tolerance. We detected several elite alleles for Al tolerance based on multiple comparisons of allelic effects, which could be used to develop Al tolerant rice cultivars through marker-assisted breeding.

8.
Front Plant Sci ; 7: 1202, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27582745

RESUMO

Association analysis based on linkage disequilibrium (LD) is an efficient way to dissect complex traits and to identify gene functions in rice. Although association analysis is an effective way to construct fine maps for quantitative traits, there are a few issues which need to be addressed. In this review, we will first summarize type, structure, and LD level of populations used for association analysis of rice, and then discuss the genotyping methods and statistical approaches used for association analysis in rice. Moreover, we will review current shortcomings and benefits of association analysis as well as specific types of future research to overcome these shortcomings. Furthermore, we will analyze the reasons for the underutilization of the results within association analysis in rice breeding.

9.
PLoS One ; 9(10): e111508, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360796

RESUMO

Mining elite genes within rice landraces is of importance for the improvement of cultivated rice. An association mapping for 12 agronomic traits was carried out using a core collection of rice consisting of 150 landraces (Panel 1) with 274 simple sequence repeat (SSR) markers, and the mapping results were further verified using a Chinese national rice micro-core collection (Panel 2) and a collection from a global molecular breeding program (Panel 3). Our results showed that (1) 76 significant (P<0.05) trait-marker associations were detected using mixed linear model (MLM) within Panel 1 in two years, among which 32% were identical with previously mapped QTLs, and 11 significant associations had >10% explained ratio of genetic variation; (2) A total of seven aforementioned trait-marker associations were verified within Panel 2 and 3 when using a general linear model (GLM) and 55 SSR markers of the 76 significant trait-marker associations. However, no significant trait-marker association was found to be identical within three panels when using the MLM model; (3) several desirable alleles of the loci which showed significant trait-marker associations were identified. The research provided important information for further mining these elite genes within rice landraces and using them for rice breeding.


Assuntos
Agricultura , Mapeamento Cromossômico , Repetições de Microssatélites/genética , Oryza/genética , Característica Quantitativa Herdável , Alelos , Frequência do Gene/genética , Marcadores Genéticos , Padrões de Herança/genética , Modelos Lineares , Modelos Genéticos , Fenótipo , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
10.
Yi Chuan Xue Bao ; 33(5): 458-67, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16722341

RESUMO

QTL underlying related traits at the late developmental stage under two different nitrogen levels were investigated in rice using a population of chromosome segment substitution lines (CSSL) derived from a cross between Teqing and Lemont. A total of 31 QTLs referring 5 traits, that is, plant height (PH), panicle number per plant (PN), chlorophyll content (CC), shoot dry weight (SDW) and grain yield per plant (YD), were detected. Under normal N level, 3 QTLs were detected for each trait, while under low N level, 5, 4, 5 and 2 QTLs were detected for PH, PN, CC and SDW respectively. Most of the QTLs were located on chromosome 2, 3, 7, 11 and 12. QTLs controlling different traits or the same trait under different N levels were mapped on the same or adjacent intervals, forming several clusters in rice chromosomes. More than two traits were controlled by QTLs on one of four intervals (RM30-RM439, RM18-RM478, RM309-RM270, and RM235-RM17), suggesting that there were some pleiotropic effects. It was supposed that some QTLs only detected at low N level might be associated with the ability to tolerate the low N stress in rice.


Assuntos
Clorofila/metabolismo , Cromossomos de Plantas/efeitos dos fármacos , Nitrogênio/farmacologia , Oryza/genética , Locos de Características Quantitativas/genética , Mapeamento Cromossômico , Oryza/crescimento & desenvolvimento , Locos de Características Quantitativas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...